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Cognitive control allows stimulus-response processing to be aligned with internal goals and is thus central to intelligent, purposeful
behavior. Control is thought to depend in part on the active representation of task information in prefrontal cortex (PFC), which provides
a source of contextual bias on perception, decision making, and action. In the present study, we investigated the organization, influences,
and consequences of context representation as human subjects performed a cued sorting task that required them to flexibly judge the
relationship between pairs of multivalent stimuli. Using a connectivity-based parcellation of PFC and multivariate decoding analyses, we
determined that context is specifically and transiently represented in a region spanning the inferior frontal sulcus during context-
dependent decision making. We also found strong evidence that decision context is represented within the intraparietal sulcus, an area
previously shown to be functionally networked with the inferior frontal sulcus at rest and during task performance. Rule-guided alloca-
tion of attention to different stimulus dimensions produced discriminable patterns of activation in visual cortex, providing a signature of
top-down bias over perception. Furthermore, demands on cognitive control arising from the task structure modulated context represen-
tation, which was found to be strongest after a shift in task rules. When context representation in frontoparietal areas increased in
strength, as measured by the discriminability of high-dimensional activation patterns, the bias on attended stimulus features was
enhanced. These results provide novel evidence that illuminates the mechanisms by which humans flexibly guide behavior in complex
environments.
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Introduction
To behave intelligently in a complex world, humans must attend
to relevant perceptual information and select actions that will
attain goals, although what information is relevant and which
actions are rewarded may change over time. The ability to flexibly
interact with the environment, often termed cognitive control, is
a hallmark of human behavior. Despite its ubiquity and central-
ity, though, the mechanisms that give rise to control remain
poorly understood.

The prefrontal cortex (PFC) is thought to be critically in-
volved in control. Injury to lateral PFC impairs performance
when rules must be used to select from several possible stimulus-
response associations (Milner, 1963; Keele and Rafal, 2000; Buck-

ley et al., 2009), and functional magnetic resonance imaging
(fMRI) reveals increased activation in lateral PFC under similar
manipulations (MacDonald et al., 2000; Braver et al., 2003; Brass
and Cramon, 2004; Badre and D’Esposito, 2007). PFC neurons
have complex response properties and can show selectivity to
abstract task rules that generalize over specific cues, stimuli, and
responses (Wallis et al., 2001; Buschman et al., 2012). This is
thought to support control by maintaining a representation of
task context: higher-order information that provides a source of
bias on signals in sensorimotor circuits (Cohen et al., 1990; Miller
and Cohen, 2001; Rougier et al., 2005).

Recent fMRI (Cole et al., 2011; Woolgar et al., 2011; Reverberi
et al., 2012; Zhang et al., 2013) and electrophysiological (Mante et
al., 2013; Rigotti et al., 2013; Stokes et al., 2013) results offer
partial support for this view by using multivariate analyses to
decode information about task context from PFC activity. Al-
though there is some evidence that perceptual representations are
enhanced during control (Sakai and Passingham, 2003; Egner
and Hirsch, 2005; Chiu et al., 2011; Nelissen et al., 2013) and that
the PFC is causally involved (Zanto et al., 2011), a direct associ-
ation between the specific mechanism of prefrontal context rep-
resentation and biased processing has yet to be demonstrated.
The role of other cortical regions in control is also unclear. Lesion
and nonhuman primate work has typically focused on PFC, but
lateral parietal cortex is also consistently activated when control is
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required (Braver et al., 2003; Brass and Cramon, 2004; Badre and
D’Esposito, 2007). These observations align with an emerging
perspective drawn from resting-state and task-based connectivity
analyses (Power et al., 2011; Cole et al., 2013) that control is
supported in part by a distributed frontoparietal network cen-
tered on the inferior frontal sulcus and intraparietal sulcus.

We used fMRI to measure brain activity while human partic-
ipants used shifting rules to guide decisions. Our analyses used
multivariate decoding methods to characterize the spatial and
temporal expression of information in frontoparietal control
regions. To understand the influences on and consequences of
context representation, we related the strength of these measure-
ments to task structure and signatures of attentional bias in visual
cortex. Our results indicate that demands on cognitive control
lead to increased discriminability of context representations in
lateral frontoparietal cortex, which is in turn associated with
enhanced processing of contextually relevant perceptual
information.

Materials and Methods
Participants and experimental design. Fifteen healthy, right-handed native
English speakers (18 –26 years old, 7 females) participated after giving
informed written consent in accordance with the Stanford University
Institutional Review Board. Subjects were paid $20/h for participating
and additionally received a performance-based bonus of up to $30. Stim-
uli for the cued sorting task consisted of polygons with three feature
dimensions: color, shape, and pattern. There were two possible feature
values along each dimension: a bright (#6AF46B) or muted (#8FB46B)
shade of green, pentagonal or heptagonal shape, and single or double
narrow horizontal bands (Fig. 1). The task required participants to make
rule-dependent judgments about the relationship between sequentially
presented pairs of these stimuli. Responses were governed by two inde-
pendent sets of rules: the dimension rules specified which of the three
dimensions was relevant for that block (i.e., color, shape, or pattern), and
the decision rules specified whether participants should respond posi-
tively if the stimulus features were the same or different along that di-
mension. Participants thus responded “yes” or “no” on each trial, with
“yes” indicating a match in the same rule or a nonmatch in the different
rule. Participants responded with the index and middle fingers of their
right hand; the mapping of “yes” and “no” responses and button presses
was counterbalanced across runs. There was no feedback provided dur-
ing the main experiment.

The task was implemented with a slow event-related design, but it was
logically organized into miniblocks of three trials (Fig. 1). At the begin-
ning of each block, an orthographic cue indicating the rules for that block
and reiterating the response mapping for that run was presented for 4 s;
the rule cue was followed by 6.5 s of fixation on a white cross preceding

the 3 trial cycles. Each trial began when the fixation cross turned red for
1.5 s, which cued the impending stimulus onset. Subsequently, 2 stimuli
were sequentially presented for 0.5 s each with 1 s of intervening fixation.
At the offset of the second stimulus, the fixation cross turned green for
2 s. Participants were instructed to respond as quickly and accurately as
possible when the second stimulus appeared, although they were given
up to 2.5 s to indicate their response. After the response window on the
first two trials of the block, the fixation cross turned back to white for
6.5 s, which provided temporal spacing between trials; 8 s of fixation on
a yellow cross followed the final stimulus event in the block.

The experiment consisted of four scanning runs, each containing four
miniblocks for each of the six rule pairings. Therefore, there were a total
of 24 trials per dimension rule (collapsed across decision rule) and 36
trials per decision rule (collapsed across dimension rule) in each run. The
attended features matched on half of the trials and were balanced across
each set of rules. Both features on the two unattended dimensions either
matched or differed on each trial; these features matched on half of the
trials and unattended feature matches were evenly counterbalanced
against attended feature matches. A different order, subject to these con-
straints, was used for each participant. Participants learned the task out-
side of the scanner and were required to reach a performance criterion
before advancing to the scanning phase: training finished when at least
nine correct responses were made on 10 consecutive trials after the 24 th

trial. Participants also performed a second short training session in the
scanner to acclimatize to the magnet environment and to ensure proper
understanding of the task. After completion of the experiment, one of the
four runs was chosen randomly and a bonus payment was calculated
based on response accuracy and average reaction time over that run.

Image acquisition and preprocessing. Whole-brain imaging was per-
formed on a 3T Signa MRI system (GE Medical Systems). Functional
images were obtained using a T2�-weighted two-dimensional gradient
echo spiral-in/out pulse sequence (TR � 2 s, TE � 30 ms, flip angle �
75°, 30 slices, 3.28 � 3.28 � 4 mm, axial oblique sequential acquisition).
In addition, a whole-brain high-resolution T1-weighted spoiled gradient
recalled echo anatomical volume was acquired for cortical surface mod-
eling and across-run alignment. Visual stimuli were projected onto a
screen and viewed through a mirror; responses were collected through a
magnet-compatible button box.

Imaging data were processed with a workflow of FSL (Smith et al.,
2004) and Freesurfer (Dale et al., 1999) tools implemented in Nipype
(Gorgolewski et al., 2011). Each time series was first realigned to its
middle volume using normalized correlation optimization and cubic
spline interpolation. To correct for differences in slice acquisition times,
data were temporally resampled to the TR midpoint using sinc interpo-
lation. Images with artifacts were automatically identified as those frames
on which total displacement relative to the previous frame exceeded 0.5
mm or in which the average intensity across the whole brain deviated
from the run mean by greater than three SDs. These frames were ex-

Figure 1. Experimental design. The task was organized into miniblocks of three consecutive trials with the same active rules, which were cued at the start of the block. The stimuli in this figure
demonstrate the two possible feature values along the dimensions of shape, color, and pattern.
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cluded from all decoding analyses. This procedure discarded 23 time
points per subject on average, or 1% of the raw data. Finally, the time
series data were high-pass filtered by fitting and removing Gaussian-
weighted running lines with an effective cycle cutoff of 128 s. Functional
data were not spatially smoothed.

Separately, the T1-weighted anatomical volume was processed using
Freesurfer to segment the gray-white matter boundary and construct
tessellated meshes representing the cortical surface (Dale et al., 1999).
Functional data from each run were then registered to the anatomical
volume with a six degree-of-freedom rigid alignment optimizing a
boundary-based cost function (Greve and Fischl, 2009). Finally, runs
2– 4 were resampled into the space of run 1 using cubic spline interpola-
tion to bring the data into a common alignment. All decoding analyses
were thus performed in a subject-specific space, avoiding normalization
to a group template.

Region-of-interest definition. Our primary analyses were motivated by
a priori interest in measuring context information in PFC. We thus pur-
sued a hypothesis-driven region-of-interest (ROI) approach, which af-
fords several advantages over a voxelwise analysis. Specifically, ROI
analyses avoid the need for precise voxel-to-voxel alignment across sub-
jects, the loss of power that is incurred when correcting for multiple
comparisons over a large search space, and the difficulties of interpreting
thresholded statistical maps. Furthermore, it is straightforward to di-
rectly test the differences in a dependent variable between ROIs, which is
critical when investigating dissociations between regions.

We derived ROIs from a population atlas of task-independent cortical
networks (Yeo et al., 2011; see Fig. 3A), which provides a complete par-
cellation of the cortical surface into networks that show correlated spon-
taneous fluctuations while subjects are resting. This allowed us to test a
specific hypothesis about the organization of PFC that has received sup-
port from analyses of the correspondence between task-independent net-
works and peak activations in task-based experiments (Nelson et al.,
2011; Power et al., 2011) and network dynamics during flexible control
(Cole et al., 2013). Specifically, it is thought that a distributed frontopa-
rietal network with a PFC node centered on the inferior frontal sulcus is
centrally important as a source of top-down influence on sensorimotor
processes.

By using a population atlas, we were able to perform analyses that
could be compared directly across experiments. However, a particular

virtue of the Yeo atlas (Yeo et al., 2011) is that it
is defined in Freesurfer’s common surface
space, which allowed us to create ROIs with
increased precision relative to a volume-based
atlas. Our specific procedure for creating ROIs
first warped region labels back to the individual
subject surfaces by inverting the spherical nor-
malization parameters obtained during corti-
cal reconstruction (Fischl et al., 1999; see Fig.
3B). Vertex coordinates within each of these
labels were then transformed into the native
functional space by inverting the linear
functional-to-anatomical transformation for
the first run. Finally, voxels were identified for
inclusion within each region’s ROI mask by
projecting half the distance of the cortical
thickness at each vertex and labeling the inter-
sected voxels. This method produced ROIs that
reflected the underlying two-dimensional to-
pology of the cortex and minimized the inclu-
sion of voxels lying outside of gray matter.

Decoding analyses. Decoding analyses were
performed using Scikit-Learn (Pedregosa et al.,
2011) and other Python-based tools (Perez and
Granger, 2007). Specifically, we used L2-
penalized logistic regression models trained
with LIBLINEAR (Fan et al., 2008). For all
analyses, the regularization parameter was set
to 1, its default value. These models were fit to
preprocessed BOLD data from within the tar-
get ROIs; no additional feature selection was

applied. Incorrect trials and those containing an fMRI artifact (see Image
acquisition and preprocessing, above) were excluded from all decoding
analyses. Decoding model matrices were normalized by run to zero mean
and unit variance across samples. For all models aside from those during
the cue period, the influence of reaction time was removed in a trialwise
manner from each column of the model matrix using linear regression
(Todd et al., 2013). In cases in which we decoded sets of task variables
with more than two classes, we used a one-versus-rest strategy in which a
set of binary models were fit to predict each class versus all others (Fan et
al., 2008). For the time-resolved decoding analyses, we fit separate mod-
els for each of six consecutive time points beginning with the time point
preceding the first stimulus onset in a trial. All other analyses were per-
formed on BOLD data that had been averaged over the time points at 3 and
5 s after stimulus onset (accounting for the temporal interpolation during
preprocessing). Decoding accuracy was computed with cross-validation
over functional runs.

Within this general framework, we performed a number of secondary
analyses to further understand the information underlying these decod-
ing results, interactions between our ROIs, and how decoding perfor-
mance was related to changes in the environment. Details of these
analyses are explained in the following paragraphs. Briefly, we first at-
tempted to quantify decoding performance in individual PFC regions.
We then examined the spatial and temporal characteristics of the decod-
ing models. Finally, we related continuous measures of classifier evidence
in frontal and parietal ROIs to decoding performance in visual cortex and
related decoding performance in all three regions to elements of the task
structure that placed demands on cognitive control.

We used two related approaches to assess the significance of these
model fits at the group and individual subject level. We first used a
randomization procedure in which we randomly shuffled the class labels
within run and refit the models 1000 times. This established an empirical
distribution of accuracy scores under the null hypothesis where there is
no association between BOLD activations and class labels (Ojala and
Garriga, 2010). We used these null distributions to quantify the signifi-
cance of the decoding results within each subject. To control for the
presence of multiple comparisons across regions and time points, we
used the same resampling to fit all models within a given iteration. We
then constructed a distribution of the maximum accuracy across these

Figure 2. Main behavioral results. Mean within-subject median reaction time (top row) and mean within-subject proportion
correct responses (bottom row) sorted by the two rule sets (A, B), by the decision rule and whether the attended features matched
or differed (C, D), and by the number of trials since the rule switch plotted separately with respect to the dimension and decision
rules (E, F ). The time courses in E and F are dashed between trials 3 and 4 to indicate passage through a miniblock boundary. Error
bars on all facets indicate bootstrapped SEs of the aggregate values across subjects. RTs are plotted only for trials included in the
imaging analyses.

Waskom, Kumaran et al. • Mechanisms of Cognitive Control J. Neurosci., August 6, 2014 • 34(32):10743–10755 • 10745



tests on each resample and used the percentiles in this distribution
corresponding to our observed accuracies as p-values for those scores
(Nichols and Holmes, 2002). The group tests used similar methods.
Here, we first took the mean of the null distribution for each test as an
empirical measure of chance and subtracted this from the observed
accuracy. We then computed a one-sample t statistic across the group
for each test. To obtain p-values for these statistics, we performed a
randomization procedure with 100,000 iterations in which we multi-
plied all scores for each subject by either 1 or �1 before computing a
t statistic for each test. We then used the distribution of maximum
statistics across tests within each resample to determine the corrected
p-value associated with our observed group mean accuracy scores
(Nichols and Holmes, 2002).

To characterize how the information in our decoding models was
organized spatially, we calculated the spatial autocorrelation of the
model coefficients. These analyses were performed on the models in
which features corresponded to BOLD activation averaged over the
time points at 3 and 5 s after stimulus onset. For the multiclass anal-
yses, each feature was associated with three weights corresponding to
the three binary classifiers. We projected these weight maps back into
the native functional image space masked by the ROI labels. For each
binary model, we then computed a Pearson correlation between the
original weight map and each of three maps that had been shifted one
voxel in the x, y, and z directions. This produced nine correlation
coefficients for each subject and ROI; we then took the mean of these nine
values and fit mixed-effects regressions with the average correlation coeffi-
cient as a dependent measure to test for differences in autocorrelation across
regions.

We also sought a precise estimate of when our decoding performance
was greatest relative to stimulus onset. To compute this measure, we first
upsampled the original BOLD time series to 500 ms resolution using
cubic spline interpolation and repeated the decoding analysis on each
new time point within the original window. We then fit gamma proba-
bility density functions (PDFs) to the resulting accuracy time courses
using constrained least-squares optimization over five free parameters:
the shape and scale parameters of the gamma distribution, onset time,
baseline accuracy, and a single vertical scaling coefficient. These models
were fit separately for subjects and ROIs and temporal inferences were
made with mixed-effects regression using each peak time as a dependent
variable.

To measure interactions between context representations in frontopa-
rietal cortex and signatures of attentional influence in visual cortex, we
exploited the fact that logistic regression provides a probabilistic estimate
of the class labels for each sample in the testing dataset. In the multiclass
case, the probabilistic estimates for each positive class in the set of binary
classifiers were normalized to sum to 1. To obtain a measure of represen-
tational strength, we extracted the probability for each sample’s target
label; that is, on a “shape” trial, we used the probability associated with
the “shape” label even though the classifier may have predicted “color” or
“pattern.” Because probabilities are bounded between 0 and 1, we ap-
plied a logit transform to these values before including them in our
statistical models. We then fit mixed-effects logistic regressions predict-
ing the accuracy of classifier predictions in visual cortex with the target
logit values from frontoparietal cortex as independent variables. Note
that this analysis is inherently correlative and does not establish the di-
rectionality of the relationship.

Figure 3. Targeted regions for decoding analyses. A, Source labels defining the ROIs on the Freesurfer average cortical surface. Please see the original reference (Yeo et al., 2011) for more
information and additional visual perspectives. B, Schematic diagram of the procedure used to label voxels in native functional space for decoding analyses. The second panel shows contours of the
template curvature plotted in the spherical coordinate system over the curvature from a representative subject. Darker areas indicate sulci. Cortical surfaces were visualized using PySurfer
(http://pysurfer.github.io/).

Table 1. Region size and average BOLD signal intensity

IFS aMFG pMFG FPC IFG aIns pSFS IPS OTC

No. of voxels
Mean 616 560 461 584 528 352 275 407 1869
SD 84 68 60 62 57 38 57 48 224

Signal intensity
Mean 116.51 118.78 117.50 102.56 99.55 118.01 116.80 138.11 117.82
SD 2.49 5.24 4.71 7.31 5.64 2.91 3.77 5.84 5.17

Shown is information about the ROIs used for decoding analyses. Means and SDs are across subjects. Signal intensities were scaled by run such that the median intensity across all four dimensions within the whole-brain mask is 100.
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Results
Behavioral results
To ensure a high level of task performance during the experi-
ment, participants were trained on the task until it was well
learned outside of the scanner and were provided with monetary
incentives to motivate performance during scanning. Collapsing
across conditions, overall response accuracy during the main ex-
periment was high (mean 95%, SD 3.2%), with all participants
performing �87%. Throughout the fMRI analyses, we consid-
ered only trials with a correct response; the mean within-subject
median reaction time (RT) on these trials was 826 ms (SD � 209
ms) with a mean interquartile range of 307 ms (SD � 101 ms).

We next considered how behavior was influenced by the di-
mension and decision rules (Fig. 2) using linear mixed-effects
regression as implemented in the R package lme4 (http://lme4.
r-forge.r-project.org/). For these models and all mixed-effects
models reported herein, we used a maximal additive random-

effects structure and inferred on the fixed
effects using likelihood ratio tests (Barr et
al., 2013). We first examined response
speed with a linear regression model pre-
dicting RT as a function of the dimension
and decision rules (Fig. 2A). We found no
evidence for an interaction between rule
sets on RT (�2

2 � 0.57; p � 0.75), so we
inferred on the main effects within an ad-
ditive model. There was no support for a
main effect of dimension rule (F � 0.42;
�2

2 � 1.52; p � 0.47), but decision rules
strongly influenced RT (F � 26.05; �1

2 �
15.09; p � 0.0001), with a slower mean
median RT of 94 ms (95% CI: 66.2 ms, 123
ms) when making a decision under the
“different” rule relative to the “same”
rule. We next examined the influence of
task rules on response accuracy (Fig. 2B)
using mixed-effects logistic regression.
Here, we coded incorrect responses and
failures to respond as errors. There was no
support for an interaction between the
two rule sets (�2

2 � 0.15; p � 0.972), and
we did not find evidence for a main effect
of dimension rule on accuracy (�2

2 � 2.64;
p � 0.27); however, there was a weak main
effect of decision rule (�1

2 � 3.85; p �
0.05), with average accuracy decreasing by
1.9% (95% CI: 0.3%, 3.7%) when partic-
ipants made a decision under the “differ-
ent” rule relative to the “same” rule.

Although we found no evidence that
average RT across the group varied with
the dimension rules, it is possible that each
subject exhibited idiosyncratic differences
that could confound our within-subject
fMRI analyses despite disappearing when
pooling across subjects in the behavioral
models (Todd et al., 2013). To assess
whether this was the case, we performed a
separate one-way ANOVA over the di-
mension rules for each subject. The me-
dian F score for these tests was 0.67 and
only 2 of 15 subjects reached significance
at p � 0.1, which indicated that the differ-

ent dimension rules did not generally influence RT in an asym-
metric manner. We nevertheless removed the effects of RT from
the imaging data before undertaking decoding analyses (see Ma-
terials and Methods for details).

We also investigated whether response speed differed when
the attended features of the stimuli matched relative to when they
differed (Fig. 2C). We first tested the effect of attended feature
matches directly; responses on these trials were numerically, but
not significantly, slower (� � 0.013; SE � 0.0092; �1

2 � 1.99; p �
0.16). We then regressed RT in an interactive model with pre-
dictors specifying the decision rule and whether the attended
stimulus features matched. This model revealed a strong in-
teraction (�1

2 � 79.04; p � 0.0001) such that responses were
fastest when the features matched under the “same” rule and
slowest when they matched under the “different” rule, with
nonmatch events falling in between.

Figure 4. Decoding results for the dimension rules in prefrontal cortex. A, Time-resolved decoding results. Solid lines indicate
mean decoding accuracy within each time bin and error bands denote bootstrapped SE across subjects. The horizontal dashed line
shows the empirical measure of chance performance derived from the permutation analysis. Vertical dashed line is placed at the
onset of the first stimulus. B, Height of each bar shows the percentile in the shuffled null distribution corresponding to the observed
accuracy for each subject and region. Horizontal dashed line demarcates the criterion of significance at a (corrected) ��0.05. Bars
are sorted by height within region. C, D, Decoding accuracies fit to data averaged across the time points at 3 and 5 s after stimulus
onset. Points and error bars represent the mean and bootstrapped SE across subjects, respectively.
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Because trials were grouped into miniblocks, participants
made decisions using the same rules at least three times before
switching to a new set. We investigated whether rule repetition
influenced response speed by fitting mixed models predicting RT
with the number of trials since the last rule switch (Fig. 2E). These
analyses did not reveal an effect of dimension rule repetition on
RT (� � 0.001; SE � 0.002; �1

2 � 0.07; p � 0.80), but there was a
small effect for the decision rules (� � �0.005; SE � 0.002; �1

2 �
3.88; p � 0.049). We also tested the influence of task switching
directly by analyzing RT on the first trial of each miniblock as a
function of whether the rules had switched. We found no evi-
dence to support an interaction between rule type and task
switches (�1

2 � 0.61; p � 0.44) and neither the main effects of
dimension (� � 0.011; SE � 0.017; �1

2 � 0.42; p � 0.52) nor
decision (� � 0.020; SE � 0.017; �1

2 � 1.39; p � 0.24) switches
were significant. Therefore, behavior was generally not influ-
enced by rule repetition or task switching.

Context decoding in lateral PFC
To focus our decoding analyses, we used independent ROIs
defined in a population atlas of task-independent cortical net-
works (Yeo et al., 2011). Although this parcellation was driven
entirely by a clustering analysis of functional connectivity pat-
terns, we will refer to the ROIs with approximate anatomical
names for clarity. We first considered seven bilateral regions
in lateral PFC (Fig. 3A, Table 1): inferior frontal sulcus (IFS),
anterior and posterior middle frontal gyrus (aMFG and
pMFG), frontopolar cortex, inferior frontal gyrus, anterior
insula/frontal operculum (aIns), and posterior superior fron-
tal sulcus (pSFS). These common-space ROIs were reverse-
normalized to individual subject surfaces using a spherical
transformation and projected into the native volume space to
select features for the decoding datasets (Fig. 3B). The use of

surface-based ROIs and native space analyses provided in-
creased precision in our efforts to understand the functional
organization of the PFC.

We used linear classifier models (L2-penalized logistic re-
gression) to predict task variables from patterns of BOLD sig-
nal in these ROIs. To characterize the temporal profile of
context representation, we leveraged the slow event-related
design in a time-resolved decoding analysis. Initial analyses
focused on decoding the dimension rules from BOLD activa-
tion elicited in each PFC ROI during the stimulus period. That
is, we aimed to decode from PFC whether the participants
were attending to the color, shape, or pattern of the stimuli
when they judged their relationship. As depicted in Figure 4,
we achieved robust decoding of the dimension rules from the
IFS; decoding performance in the other prefrontal ROIs was
substantially lower, although in most cases, we observed a
stimulus-evoked increase in accuracy (Fig. 4A).

To quantify the statistical significance of these results, we first
compared the distribution of observed accuracies across the sam-
ple of participants against an empirical measure of chance per-
formance. This analysis revealed that group mean accuracy
reached significance at p � 0.05 (one tailed; corrected) for at least
one time point in the IFS (mean � 0.46; time � 3 s; t � 7.95; p �
0.0001), aMFG (mean � 0.39; time � 5 s; t � 6.60; p � 0.0002),
pMFG (mean � 0.38; time � 5 s; t � 8.69; p � 0.0001), aIns
(mean � 0.37; time � 3 s; t � 4.48; p � 0.0081), and pSFS
(mean � 0.38; time � 5 s; t � 5.92; p � 0.0008). Importantly, we
also assessed the significance of the within-subject model fits us-
ing the results of our permutation analysis. Here, we found that
the decoding models reached significance for 11 of 15 partici-
pants in the IFS, but for no more than three participants in any of
the other lateral PFC regions (Fig. 4B).

We next verified that decoding performance in the IFS was
statistically superior to that in other prefrontal regions. For these
analyses, we averaged the BOLD signal across two time points at
3 and 5 s after stimulus onset before fitting new models to obtain
a more robust estimate of the information in each ROI (Fig. 4C).
We then performed paired t tests on decoding accuracy for all
pairs of PFC regions. These tests showed that decoding was sig-
nificantly greater in the IFS compared with all other PFC regions
(all p � 0.001, corrected); we found no other differentiation at
p � 0.05 (corrected). In addition, we compared accuracy in the
IFS model with decoding performance from a region combining
all seven lateral PFC regions. Peak accuracy in this collective ROI
was significantly reduced relative to the more targeted IFS region
(mean: 0.44, 95% CI: 0.41, 0.47; paired t14 � 4.71; p � 0.0003).
Therefore, the representation of information related to the di-
mension rules within the PFC was primarily localized to the re-
gion spanning the IFS.

We furthermore found no evidence for a finer scale of orga-
nization within the IFS region (Fig. 4D). We examined the left
and right ROIs separately and found similar performance in both
hemispheres (left: mean � 0.45, 95% CI � 0.42, 0.47; right:
mean � 0.44, 95% CI � 0.42, 0.47; paired t14 � 0.29; p � 0.77);
accuracy in each lateralized ROI was relatively weaker than that
for the full region (left: paired t14 � 4.25; p � 0.0008; right: paired
t14 � 5.31; p � 0.0001). We also examined a possible rostrocaudal
organization by evenly dividing each hemisphere perpendicular
to its principle eigenaxis. Decoding performance between the
anterior (aIFS) and posterior (pIFS) ROIs did not significantly
differ (aIFS: mean � 0.45, 95% CI � 0.42, 0.48; pIFS: mean �
0.45; 95% CI � 0.43, 0.47; paired t14 � 0.13; p � 0.90), and each

Figure 5. Searchlight analysis of the dimension rules in prefrontal cortex. A, Map of group-
average searchlight accuracy after surface-based normalization and smoothing. The map is
thresholded at p � 0.005 (uncorrected) from a group t test against expected chance. Voxels
falling outside of the lateral PFC mask are dimmed and the IFS region used in ROI-based analysis
is outlined in gray. B, Example slice through the native functional volume showing the search
space. This region was defined by combining the masks for each individual PFC ROI and dilating
the result by three voxels. Decoding models were fit within spheres of 10 mm radius and then
the resulting accuracy maps were projected onto the surface for group testing. C, Distribution of
searchlight accuracies within the PFC mask after group averaging.
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subregion again demonstrated relatively weaker accuracy com-
pared with the full IFS (aIFS: paired t14 � 3.82; p � 0.0019; pIFS:
paired t14 � 4.14; p � 0.0010). We furthermore fit a decoding
model after collapsing the BOLD data to a single feature by taking
the mean across voxels. Group mean decoding accuracy did not
significantly exceed the permutation-estimated chance value
(mean � 0.35; 95% CI � 0.34, 0.36; chance � 0.34; p � 0.075,
one-tailed), and only two individual subject models significantly
exceeded chance in a permutation test. The performance of the
reduced dimensionality model was also markedly inferior to that
of the full model (paired t14 � 9.24; p � 0.0001). Together, these
analyses indicate that the decoding models exploited pattern in-
formation distributed across the IFS region.

To further validate these results, we performed a searchlight
analysis within lateral PFC (Fig. 5). This provided additional ev-
idence that information about the dimension rules was generally
centered on, but not completely circumscribed by, the IFS region
(Fig. 5A). Decoding performance in the searchlight analysis was
considerably weaker than what we found using ROI-based meth-
ods (Fig. 5C), with the distribution of decoding accuracy in
searchlight centers falling well below what we achieved when
considering the entire IFS region.

Participants may have verbally re-
hearsed the task rules during the stimulus
period. If this were the case, our results
could be due to phonological processes
rather than abstract representations of
task information. To assess this explana-
tion, we reasoned that phonological pro-
cessing would also be active during the
cue period when subjects processed the
instructions for that miniblock. We there-
fore conducted a time-resolved decoding
analysis within the IFS during the cue pe-
riod. This decoding was not successful,
obtaining a maximum group mean accu-
racy of 0.36 at 5 s after cue onset (p � 0.12,
corrected). The context decoding results
thus depend on information that is specif-
ically active during rule implementation
and are unlikely to arise from verbal re-
hearsal of task rules.

We also considered the set of decision
rules that specified whether participants
should make “same” or “different” deci-
sions about the relationship between the
pair of stimuli on each trial. The ability to
decode the decision rules was consider-
ably diminished relative to the dimension
rules (Fig. 6). All group mean tests were
nonsignificant (p � 0.9, corrected) and
only two individual subject models (one
in the IFS and one in the aIns) reached
significance (Fig. 6B). We thus found no
evidence that distributed patterns of
BOLD signal in the PFC carried informa-
tion about the kind of decision that sub-
jects made on each trial. For this reason,
we focused on the dimension rules in all
subsequent analyses.

Control signals in posterior neocortex
Prefrontal regions are coupled with other

neocortical areas, and a central hypothesis about mechanisms of
goal-directed behavior is that control emerges in part from inter-
actions within these networks (Goldman-Rakic, 1987; Petersen
and Posner, 2012). Guided by the particular focus on frontopa-
rietal interactions (Goldman-Rakic, 1987), we next investigated
whether patterns of activation in posterior parietal cortex dis-
criminate task contexts dependent on the dimension rules. Re-
turning to the atlas of task-independent networks (Yeo et al.,
2011), we selected the lateral parietal component of the fronto-
parietal network, which is located within the intraparietal sulcus
(IPS; Fig. 3A, Table 1).

We also sought to test the hypothesis that representations of
context provide a source of bias on goal-relevant perceptual in-
formation (Desimone and Duncan, 1995; Miller and Cohen,
2001). We reasoned that biased processing might give rise to
discriminative patterns in the visual cortex BOLD signal by am-
plifying the representation of the attended feature, allowing us to
further investigate control processes as they play out across the
neocortex. We therefore also extracted BOLD data from one of
the two visual regions in the Yeo atlas (Yeo et al., 2011). This
region covers the foveal components of early visual regions (V1–
V3) and extends to midlevel areas on the lateral and ventral sur-

Figure 6. Decoding results for the decision rules in prefrontal cortex. Plot conventions are identical to those in Figure 4. The
y-axis is scaled to span similar binomial probabilities as in Figure 4.
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faces; we will refer to it as the occipital
temporal cortex (OTC; Fig. 3A, Table 1).
In contrast to our expectations about
frontoparietal cortex, we did not have a
priori predictions about how informative
signals might be distributed within or
across subregions of visual cortex. We
thus chose to consider visual cortex as a
single unit and allow the classifiers to
learn any discriminative information that
could serve as a signature of top-down in-
fluence over visual processing. That infor-
mation could take the form of changes
either in the average activation across vi-
sual subregions or in distributed patterns
across larger expanses of visual cortex.

We then repeated the time-resolved
decoding analysis to determine whether
the different contexts imposed by the di-
mension rules influenced processing
within these regions. This revealed sub-
stantial context information (Fig. 7A,B),
with significant group tests for both IPS
(p � 0.0001) and OTC (p � 0.0001) and
significant individual model performance
for every subject in both ROIs. In our
conception of goal-directed attention,
control-related processes differ between
these regions: frontoparietal areas maintain
a more abstract representation of context
that leads to biased processing of stimulus
features within visual cortex. We thus
sought to understand to what extent the in-
formation underlying our decoding results
differed between these three regions.

We first considered the spatial scale of
this information by computing the auto-
correlation of the model coefficients when
projected back into the functional image
space. In regions with higher first-order
autocorrelation, voxels that influence the
classifier’s prediction toward one particu-
lar dimension are more likely to be located
adjacent to other voxels with similar pref-
erences. An omnibus mixed-effects re-
gression showed a significant difference across the three ROIs
(F � 42.6; �2

2 � 28.5; p � 0.0001; Fig. 7C). Pairwise comparisons
determined that this effect was driven by higher autocorrelation
in the OTC (mean r � 0.25; SD � 0.34) relative to the IFS (mean
r � 0.15; SD � 0.35; paired t14 � 8.84; p � 0.0001) and IPS (mean
r � 0.15; SD � 0.43; paired t14 � 6.50; p � 0.0001). In contrast,
autocorrelation did not differ between the IFS and IPS (paired t14

� 0.13; p � 0.90). Visual inspection of the classifier weights
aligned with this statistical analysis. Clusters of voxels with simi-
lar preferences were more easily observed in visual cortex than in
frontoparietal cortex and these clusters appeared to be consis-
tently organized across participants only in visual cortex. There-
fore, information about the attended stimulus dimension was
distributed more coarsely in visual cortex relative to frontopari-
etal regions.

We next considered the temporal profile of context decoding
within this network. In the group-average data, the IFS and IPS
decoding accuracy time courses peaked at 3 s after stimulus onset,

whereas the OTC time course peaked at 5 s. For a more precise
estimate, we fit gamma PDFs to upsampled decoding time
courses (Fig. 7A). Overall, these models characterized the data
well (IFS: median R 2 � 0.69; 95% CI � 0.62, 0.87; IPS: median R 2

� 0.87; 95% CI � 0.72, 0.92; OTC: median R 2 � 0.95; 95% CI �
0.91, 0.96). We then took the time at the peak of each PDF as an
estimate of when there was maximal information about task rules
relative to stimulus onset (IFS: mean � 3.71 s; 95% CI � 3.47 s,
3.95 s; IPS: mean � 3.47 s; 95% CI � 3.22 s, 3.74 s; OTC: mean �
4.42 s; 95% CI � 4.19 s, 4.64 s). Paired comparisons (Fig. 7D)
confirmed that both the IFS (mean � 0.71 s; 95% CI � 0.41 s,
0.99 s; paired t14 � 4.67; p � 0.0004) and IPS (mean � 0.95 s; 95%
CI � 0.77 s, 1.11 s; paired t14 � 10.36; p � 0.0001) peaked earlier
than the OTC; there was not strong evidence for a difference
between timing in the IFS and IPS (mean � �0.24 s, 95% CI �
�0.53 s, 0.04 s; t14 � 1.58; paired p � 0.14). The OTC time course
peaked later than the IPS time course in every subject and peaked
later than the IFS time course in 13 subjects.

Figure 7. Decoding results for the dimension rules in posterior neocortex. A, Points and error bars show the mean and boot-
strapped SE, respectively, for decoding accuracy in the original time bins. The solid traces show the gamma PDF models used to
derive temporal information averaged across subjects. Plot conventions are otherwise as in Figure 4A. B, Plot conventions are as in
Figure 4C. C, Boxplots showing the distribution of model coefficient autocorrelation across subjects sorted by region. D, Boxplots
showing the distribution of relative differences in the time of peak decoding accuracy for the IFS and IPS models relative to the OTC
models. Negative numbers indicate later peaks in the OTC.
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Interactions between frontoparietal and
sensory representations
To directly test the theory that context representations in fronto-
parietal cortex support the biased processing of goal-relevant
sensory information, we next measured the relationship between
these regions with respect to our decoding measures. We rea-
soned that, if frontoparietal cortex supports top-down control
over processing in visual regions, then the strength of the fronto-
parietal representations should predict the degree of attentional
bias in visual cortex. We thus conducted a mixed-effects logistic
regression that predicted whether the OTC classifier was accurate
on each trial with the logit-transformed target class probabilities
from the IFS and IPS models (Fig. 8). In this analysis, both the IFS
(� � 0.082; SE � 0.013; �1

2 � 24.49; p � 0.0001) and the IPS (� �
0.18; SE � 0.019; �1

2 � 29.10; p � 0.0001) predictors were signif-
icantly greater than 0. Because we included both the IFS and IPS
logit vectors in a single model, these parameter estimates reflect
the unique ability of classifier strength in each area to predict

classifier accuracy in the OTC. Furthermore, we tested a linear
contrast of these parameter estimates and found that that the
regression coefficient for the IPS was significantly larger than that
for the IFS (� � 0.094; SE � 0.025; z � 3.82; p � 0.0001). As a
control, we used the realignment parameters to compute a root-
mean-squared frame-to-frame displacement measure for the two
time points on each trial underlying this analysis. Adding this
measure of motion to the model did not change the results for the
parameters of interest (�IFS � 0.082; �IPS � 0.18), suggesting that
the relationship between frontoparietal and visual decoding was
not being driven by motion-related image confounds. Therefore,
the discriminability of context information in the IFS and IPS
appears to predict the strength of attentional bias on goal-
relevant stimulus features in visual cortex.

Control demand effects on context representation
Our final analyses concerned the relationship between demands
on cognitive control and the neural measures identified in the
preceding results. Control processes must be responsive to the
environment and they are thought to be more necessary in
the presence of shifting task demands (Keele and Rafal, 2000;
Rossi et al., 2007). To understand how different levels of demand
on control influence the information within this network of re-
gions, we examined the effects of making repeated decisions un-
der the same dimension rule. We extracted the trialwise
prediction accuracies from the dimension rule classifiers in IFS,
IPS, and OTC and then fit a mixed-effects logistic regression
predicting these variables with the log-transformed number of
trials that had elapsed since the last rule switch (Fig. 9). We re-
stricted this analysis to a maximum of six repetitions because
performing three consecutive miniblocks under the same dimen-
sion rule was rare and we correspondingly had very few data
points for these values. We found no evidence supporting an
interaction between region and repetition (�2

2 � 2.18; p � 0.34),
but we found a strong main effect of repetition (� � �0.20; SE �
0.034; �1

2 � 18.71; p � 0.0001) such that classifier prediction
accuracy decreased over repeated trials with the same rule. This
effect was not explained by changes in mean signal amplitude
across the ROIs. We also examined the effects of including the
classifier evidence from IFS and IPS in a model predicting OTC
accuracy with trial position. The IFS (� � 0.085; SE � 0.014; �1

2 �
21.19; p � 0.0001) and IPS (� � 0.17; SE � 0.019; �1

2 � 28.83; p �
0.0001) remained strong predictors of OTC classifier accuracy;
importantly, they also mediated the effect of trial position, which
dropped below significance (� � �0.10; SE � 0.072; �1

2 � 1.81;
p � 0.18). These analyses provide further evidence that fronto-
parietal areas adapt in the face of demands on cognitive control to
implement a top-down bias on perceptual processes and support
goal-directed attention.

Discussion
Cognitive control allows humans to interact flexibly with their
environment in the service of diverse goals. Here, we present
empirical measurements of frontoparietal representations that
facilitate top-down control. Our data provide several novel in-
sights about the mechanisms that align sensorimotor processing
with shifting task demands. In the PFC, we found that task infor-
mation was transiently represented during decision making
within a region running along the inferior frontal sulcus, which
was defined using an atlas of task-independent functional net-
works. We observed similar results within the IPS, a parietal re-
gion that is thought to be functionally coupled with the IFS.
Patterns of activation in visual cortex contained discriminative

Figure 8. Relationship between frontoparietal classifier evidence and visual classifier per-
formance. A, Points show the mean OTC classifier accuracy sorted by binned IFS and IPS classifier
evidence (the logit-transformed probability of the target class). Error bars represent the boot-
strapped SE across subjects. Solid traces show the predictions of a logistic regression model fit to
all data points. Horizontal dashed line shows chance performance. B, C, Histograms showing
the distribution of classifier evidence in IFS and IPS for all trials and subjects; the x-axis and bins
correspond across all three panels.
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information about which stimulus di-
mension was being attended while visual
input was held constant, a signature of
top-down influence over perception.
Within this network of regions, we found
evidence that context representation was
graded in strength with several conse-
quences for control implementation.
Classifier performance was modulated by
control demands that emerged from the
task structure such that context discrim-
inability gradually decayed after a rule
shift; correspondingly, the strength of
context representation in both frontal and
parietal cortex independently predicted
the degree of attentional bias in visual
cortex.

To understand how the PFC enables
cognitive control, it is important to deter-
mine its functional organization. One
prominent class of theories divides lateral
PFC along a coarse dorsal–ventral divi-
sion (Courtney, 2004; Petrides, 2005;
O’Reilly, 2010). In contrast, measure-
ments of task-independent functional
connectivity across a range of analytical
frameworks have identified an intermedi-
ate prefrontal region spanning the IFS; at
rest and during task-directed behavior, this region couples func-
tionally with the IPS (Vincent et al., 2008; Power et al., 2011; Yeo
et al., 2011). The correspondence between these regions and focal
activations in task-based experiments suggests that they comprise
a control or executive network (Nelson et al., 2010; Power et al.,
2011). Our data support this perspective. Decoding accuracy in
the IFS exceeded the performance of every other prefrontal ROI,
and information about task context appeared to be distributed
throughout it. Elsewhere in PFC, average decoding performance
generally rose above chance, but individual models tended to be
unreliable. Because these other regions surround the IFS, this
could reflect errors introduced by using macroanatomical struc-
ture to transform functional ROIs into native space. It is also
important to note that the ROI definitions in the Yeo atlas (Yeo et
al., 2011) are only an estimate of functional organization. The
exact boundaries of the regions are sensitive to different analyti-
cal choices, and the true underlying organization of PFC may be
dynamic and context dependent. Nevertheless, our data show
that patterns of functional connectivity provide an informative
definition of control regions in frontoparietal cortex. This al-
lowed us to explore the relationship among frontoparietal con-
text representation, attentional effects in visual cortex, and
changes in task demands. Collectively, these results demonstrate
that a combination of task-independent and task-based methods
can elucidate the functions of human PFC.

Our experiment’s event-related design further allowed us to
explore the temporal dynamics of context representation. PFC
neurons exhibit sustained, distractor-resistant activity in the ab-
sence of sensory input (Miller et al., 1996), which is often thought
to critically underlie the PFC’s role in cognitive control (Rougier
et al., 2005). Contrary to this emphasis on persistent neuronal
firing, we did not find evidence that context representations were
sustained between decision events within a miniblock. These re-
sults partially diverge from the model of PFC organization ad-
vanced by Dosenbach et al. (2007), in which the frontoparietal

and cinguloopercular networks support independent control
processes with, respectively, transient and sustained dynamics.
Although the transient frontoparietal response is consistent with
this model, the context information predictably spanned mini-
blocks and should thus correspond with stable task control.
However, information about context was only weakly present in
the aIns and aMFG, which are part of the cinguloopercular sys-
tem. Intriguingly, there is evidence that different contexts can
remain separated in neuronal state space even while average pop-
ulation activity settles to baseline between trials (Stokes et al.,
2013). It is thus possible that subtle differences in baseline firing
maintain a memory trace for the current context but do not drive
the hemodynamic response powerfully enough to support reli-
able decoding from BOLD data in between stimulus events.

In our task, the context for each decision was specified by
explicit rules presented at the start of each block. Neurons in the
macaque PFC show rule-selective responses in similar tasks
(Wallis et al., 2001; Buschman et al., 2012) and we suspect that
such selectivity is a major component of the PFC representation
underlying our decoding results. PFC neurons also exhibit selec-
tive responses to specific stimuli and task contexts that are not
explicitly instructed, often with diverse responses mixed within
individual cells (Mante et al., 2013; Rigotti et al., 2013; Stokes et
al., 2013). Although rules provide efficient structure for goal-
directed behavior, control over decision making both in the real
world and in the laboratory can rely on diverse forms of informa-
tion. We thus do not think of the frontoparietal control network
as being specialized for representing rules per se. Instead, the
frontoparietal representation separates task variables to the ex-
tent that they effectively parameterize different behavioral strat-
egies given environmental demands and internal goals. These
representations are likely constructed and tuned by reinforce-
ment learning mechanisms that gate information into and out of
the context representation based on whether the use of that in-

Figure 9. Relationship between control demands and dimension rule decoding. Points and error bars show means and boot-
strapped SEs across subjects, respectively. Solid traces show the predictions of a log-linear fit to all data points. Traces are dashed
between trials 3 and 4 to indicate passage through a miniblock boundary. Horizontal dashed line shows chance performance.
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formation leads to rewarding outcomes (Braver and Cohen,
2000; Badre et al., 2010).

It is surprising, then, that we found no evidence that popula-
tions of voxels in PFC discriminated the decision rules. To ensure
that our results would not be driven by differences in rule diffi-
culty or complexity, we corrected all analyses for RT (Todd et al.,
2013). We can thus conclude only that no residual activation,
after removing the effects of RT, contained information about the
decision rules. Although previous work has conceptualized task
rules as providing a conditional input– output map that links
sensory input to action selection (Bunge, 2004), the striking in-
teraction in our data between decision rule and feature matching
suggests that the subjects did not implement the set of decision rules
in this manner. Nevertheless, because the decision rules decoupled
the processing of stimulus information from response selection, our
dimension-rule-decoding results demonstrate that frontoparietal
representations underlying control can be independent of the action
plan that emerges from controlled decision making.

Both spatial and temporal characteristics dissociated the IFS
and IPS models from those in OTC. It is important to note that
these results may reflect only differences in the vasculature and
hemodynamic coupling across these regions (Handwerker et al.,
2004; Logothetis and Wandell, 2004). Alternatively, the temporal
dissociation could be accounted for by our slow event-related
design and the anticipatory cue, which allowed for preparatory
set in advance of stimulus processing. Spatially, single-unit neu-
rophysiology experiments typically find that neurons with selec-
tivity to opposing rules are intermingled throughout prefrontal
areas (Buschman et al., 2012), whereas attentional bias in sensory
cortex likely increases activation in subregions that preferentially
represent different stimulus dimensions and thus yield the
coarser organization we observed in OTC. These observations
could be strengthened by future experiments that provide for
more targeted analyses in visual cortex.

We found that task switching influenced context representa-
tion such that decoding performance declined over the trials im-
mediately after a rule switch. It is well established that the PFC
makes essential contributions to behavior in shifting environ-
ments, but its exact role has remained unclear (Keele and Rafal,
2000; Buchsbaum et al., 2005). According to one view, increased
prefrontal activation on switch trials reveals a process of recon-
figuration (Konishi et al., 1998) that has been proposed as a
source of behavioral switching costs (Monsell, 2003). In our ex-

periment, we did not observe a behavioral switching effect, likely
due to the long delay between the task cue and first stimulus event
of each block. Instead, we argue that, independently of reconfigu-
ration, proximity to a switch places demands on cognitive con-
trol; our results indicate that humans can adjust their attentional
processes on a relatively short time scale after a switch such that
there is less need for a separation between rules in the frontopa-
rietal context representation (Fig. 10). These data clarify the
mechanisms underlying findings on the effects of PFC lesions in
humans (Keele and Rafal, 2000) and macaques (Rossi et al.,
2007), along with characteristic patterns of BOLD activation in
task-switching experiments (Braver et al., 2003; Brass and Cra-
mon, 2004; Badre and Wagner, 2006; De Baene et al., 2012).

More broadly, this result supports the perspective that human
cognition exists on a continuum of automaticity (Cohen et al.,
1990), which stands in contrast to models that posit a strong
distinction between automatic and controlled behavior. In our
account, increased engagement of control sharpens the abstract
representations of variables that are critical for performance of
the current task. This flexible discriminability leads to enhanced
lower-level processing of relevant environmental information
and controls the selective gating of that information into decision
making and action selection. Through these mechanisms, human
cognition adapts to a broad variety of natural environments and
produces intelligent behavior.

Notes
Supplemental material for this article is available at https://github.
com/WagnerLabPapers/Waskom_JNeurosci_2014. This repository con-
tains all code that was used to produce the results and figures in the paper.
This material has not been peer reviewed.
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